Auto-encoding is an important task which is typically realized by deep neural
networks (DNNs) such as convolutional neural networks (CNN). In this paper, we
propose EncoderForest (abbrv. eForest), the first tree ensemble based
auto-encoder. We present a procedure for enabling forests to do backward
reconstruction by utilizing the equivalent classes defined by decision paths of
the trees, and demonstrate its usage in both supervised and unsupervised
setting. Experiments show that, compared with DNN autoencoders, eForest is able
to obtain lower reconstruction error with fast training speed, while the model
itself is reusable and damage-tolerable