Cells process external and internal signals through chemical interactions.
Cells that constitute the immune system (e.g., antigen presenting cell, T-cell,
B-cell, mast cell) can have different functions (e.g., adaptive memory,
inflammatory response) depending on the type and number of receptor molecules
on the cell surface and the specific intracellular signaling pathways activated
by those receptors. Explicitly modeling and simulating kinetic interactions
between molecules allows us to pose questions about the dynamics of a signaling
network under various conditions. However, the application of chemical kinetics
to biochemical signaling systems has been limited by the complexity of the
systems under consideration. Rule-based modeling (BioNetGen, Kappa, Simmune,
PySB) is an approach to address this complexity. In this chapter, by
application to the FcεRI receptor system, we will explore the
origins of complexity in macromolecular interactions, show how rule-based
modeling can be used to address complexity, and demonstrate how to build a
model in the BioNetGen framework. Open source BioNetGen software and
documentation are available at http://bionetgen.org.Comment: 5 figure