research

Understanding large-scale structure in the SSA22 protocluster region using cosmological simulations

Abstract

We investigate the nature and evolution of large-scale structure within the SSA22 protocluster region at z=3.09z=3.09 using cosmological simulations. A redshift histogram constructed from current spectroscopic observations of the SSA22 protocluster reveals two separate peaks at z=3.065z = 3.065 (blue) and z=3.095z = 3.095 (red). Based on these data, we report updated overdensity and mass calculations for the SSA22 protocluster. We find δb,gal=4.8±1.8\delta_{b,gal}=4.8 \pm 1.8, δr,gal=9.5±2.0\delta_{r,gal}=9.5 \pm 2.0 for the blue and red peaks, respectively, and δt,gal=7.6±1.4\delta_{t,gal}=7.6\pm 1.4 for the entire region. These overdensities correspond to masses of Mb=(0.76±0.17)×1015h1MM_b = (0.76 \pm 0.17) \times 10^{15} h^{-1} M_{\odot}, Mr=(2.15±0.32)×1015h1MM_r = (2.15 \pm 0.32) \times 10^{15} h^{-1} M_{\odot}, and Mt=(3.19±0.40)×1015h1MM_t=(3.19 \pm 0.40) \times 10^{15} h^{-1} M_{\odot} for the red, blue, and total peaks, respectively. We use the Small MultiDark Planck (SMDPL) simulation to identify comparably massive z3z\sim 3 protoclusters, and uncover the underlying structure and ultimate fate of the SSA22 protocluster. For this analysis, we construct mock redshift histograms for each simulated z3z\sim 3 protocluster, quantitatively comparing them with the observed SSA22 data. We find that the observed double-peaked structure in the SSA22 redshift histogram corresponds not to a single coalescing cluster, but rather the proximity of a 1015h1M\sim 10^{15}h^{-1} M_{\odot} protocluster and at least one >1014h1M>10^{14} h^{-1} M_{\odot} cluster progenitor. Such associations in the SMDPL simulation are easily understood within the framework of hierarchical clustering of dark matter halos. We finally find that the opportunity to observe such a phenomenon is incredibly rare, with an occurrence rate of 7.4h^3 \mbox{ Gpc}^{-3}.Comment: 13 pages, 8 figures, Accepted to Ap

    Similar works