Combining high-resolution single cell tracking experiments with numerical
simulations, we show that starvation-induced fruiting body (FB) formation in
Myxococcus xanthus is a phase separation driven by cells that tune their
motility over time. The phase separation can be understood in terms of cell
density and a dimensionless Peclet number that captures cell motility through
speed and reversal frequency. Our work suggests that M. xanthus take advantage
of a self-driven non-equilibrium phase transition that can be controlled at the
single cell level