Mesoscale filtering and protective layers are replete throughout the natural
world. Within the body, arrays of extracellular proteins, microvilli, and cilia
can act as both protective layers and mechanosensors. For example, blood flow
profiles through the endothelial surface layer determine the amount of shear
stress felt by the endothelial cells and may alter the rates at which molecules
enter and exit the cells. Characterizing the flow profiles through such layers
is therefore critical towards understanding the function of such arrays in cell
signaling and molecular filtering. External filtering layers are also important
to many animals and plants. Trichomes (the hairs or fine outgrowths on plants)
can drastically alter both the average wind speed and profile near the leaf's
surface, affecting the rates of nutrient and heat exchange. In this paper,
dynamically scaled physical models are used to study the flow profiles outside
of arrays of cylinders that represent such filtering and protective layers. In
addition, numerical simulations using the Immersed Boundary Method are used to
resolve the 3D flows within the layers. The experimental and computational
results are compared to analytical results obtained by modeling the layer as a
homogeneous porous medium with free flow above the layer. The experimental
results show that the bulk flow is well described by simple analytical models.
The numerical results show that the spatially averaged flow within the layer is
well described by the Brinkman model. The numerical results also demonstrate
that the flow can be highly 3D with fluid moving into and out of the layer.
These effects are not described by the Brinkman model and may be significant
for biologically relevant volume fractions. The results of this paper can be
used to understand how variations in density and height of such structures can
alter shear stresses and bulk flows.Comment: 28 pages, 10 figure