Throughout evolution the brain has mastered the art of processing real-world
inputs through networks of interlinked spiking neurons. Synapses have emerged
as key elements that, owing to their plasticity, are merging neuron-to-neuron
signalling with memory storage and computation. Electronics has made important
steps in emulating neurons through neuromorphic circuits and synapses with
nanoscale memristors, yet novel applications that interlink them in
heterogeneous bio-inspired and bio-hybrid architectures are just beginning to
materialise. The use of memristive technologies in brain-inspired architectures
for computing or for sensing spiking activity of biological neurons8 are only
recent examples, however interlinking brain and electronic neurons through
plasticity-driven synaptic elements has remained so far in the realm of the
imagination. Here, we demonstrate a bio-hybrid neural network (bNN) where
memristors work as "synaptors" between rat neural circuits and VLSI neurons.
The two fundamental synaptors, from artificial-to-biological (ABsyn) and from
biological-to- artificial (BAsyn), are interconnected over the Internet. The
bNN extends across Europe, collapsing spatial boundaries existing in natural
brain networks and laying the foundations of a new geographically distributed
and evolving architecture: the Internet of Neuro-electronics (IoN).Comment: 16 pages, 10 figure