Uphill currents are observed when mass diffuses in the direction of the
density gradient. We study this phenomenon in stationary conditions in the
framework of locally perturbed 1D Zero Range Processes (ZRP). We show that the
onset of currents flowing from the reservoir with smaller density to the one
with larger density can be caused by a local asymmetry in the hopping rates on
a single site at the center of the lattice. For fixed injection rates at the
boundaries, we prove that a suitable tuning of the asymmetry in the bulk may
induce uphill diffusion at arbitrarily large, finite volumes. We also deduce
heuristically the hydrodynamic behavior of the model and connect the local
asymmetry characterizing the ZRP dynamics to a matching condition relevant for
the macroscopic problem