Enumerative geometry of dormant opers


The purpose of the present paper is to develop the enumerative geometry of dormant GG-opers for a semisimple algebraic group GG. In the present paper, we construct a compact moduli stack admitting a perfect obstruction theory by introducing the notion of a dormant faithful twisted GG-oper (or a "GG-do'per" for short. Moreover, a semisimple 22d TQFT (= 22-dimensional topological quantum field theory) counting the number of GG-do'pers is obtained by means of the resulting virtual fundamental class. This 22d TQFT gives an analogue of the Witten-Kontsevich theorem describing the intersection numbers of psi classes on the moduli stack of GG-do'pers.Comment: 64 pages, the title is changed, some mistakes are correcte

    Similar works

    Full text


    Available Versions