research

Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching

Abstract

The gauge-invariant operators up to dimension six in the low-energy effective field theory below the electroweak scale are classified. There are 70 Hermitian dimension-five and 3631 Hermitian dimension-six operators that conserve baryon and lepton number, as well as ΔB=±ΔL=±1\Delta B= \pm \Delta L = \pm 1, ΔL=±2\Delta L=\pm 2, and ΔL=±4\Delta L=\pm 4 operators. The matching onto these operators from the Standard Model Effective Field Theory (SMEFT) up to order 1/Λ21/\Lambda^2 is computed at tree level. SMEFT imposes constraints on the coefficients of the low-energy effective theory, which can be checked experimentally to determine whether the electroweak gauge symmetry is broken by a single fundamental scalar doublet as in SMEFT. Our results, when combined with the one-loop anomalous dimensions of the low-energy theory and the one-loop anomalous dimensions of SMEFT, allow one to compute the low-energy implications of new physics to leading-log accuracy, and combine them consistently with high-energy LHC constraints.Comment: 44 pages, 22 tables; version published in JHE

    Similar works