research

One-sample aggregate data meta-analysis of medians

Abstract

An aggregate data meta-analysis is a statistical method that pools the summary statistics of several selected studies to estimate the outcome of interest. When considering a continuous outcome, typically each study must report the same measure of the outcome variable and its spread (e.g., the sample mean and its standard error). However, some studies may instead report the median along with various measures of spread. Recently, the task of incorporating medians in meta-analysis has been achieved by estimating the sample mean and its standard error from each study that reports a median in order to meta-analyze the means. In this paper, we propose two alternative approaches to meta-analyze data that instead rely on medians. We systematically compare these approaches via simulation study to each other and to methods that transform the study-specific medians and spread into sample means and their standard errors. We demonstrate that the proposed median-based approaches perform better than the transformation-based approaches, especially when applied to skewed data and data with high inter-study variance. In addition, when meta-analyzing data that consists of medians, we show that the median-based approaches perform considerably better than or comparably to the best-case scenario for a transformation approach: conducting a meta-analysis using the actual sample mean and standard error of the mean of each study. Finally, we illustrate these approaches in a meta-analysis of patient delay in tuberculosis diagnosis

    Similar works

    Full text

    thumbnail-image

    Available Versions