We trained and applied an encoder-decoder model to semantically segment
breast biopsy images into biologically meaningful tissue labels. Since
conventional encoder-decoder networks cannot be applied directly on large
biopsy images and the different sized structures in biopsies present novel
challenges, we propose four modifications: (1) an input-aware encoding block to
compensate for information loss, (2) a new dense connection pattern between
encoder and decoder, (3) dense and sparse decoders to combine multi-level
features, (4) a multi-resolution network that fuses the results of
encoder-decoders run on different resolutions. Our model outperforms a
feature-based approach and conventional encoder-decoders from the literature.
We use semantic segmentations produced with our model in an automated diagnosis
task and obtain higher accuracies than a baseline approach that employs an SVM
for feature-based segmentation, both using the same segmentation-based
diagnostic features.Comment: Added more WSI images in appendi