Many datasets describing contacts in a population suffer from incompleteness
due to population sampling and underreporting of contacts. Data-driven
simulations of spreading processes using such incomplete data lead to an
underestimation of the epidemic risk, and it is therefore important to devise
methods to correct this bias. We focus here on a non-uniform sampling of the
contacts between individuals, aimed at mimicking the results of diaries or
surveys, and consider as case studies two datasets collected in different
contexts. We show that using surrogate data built using a method developed in
the case of uniform population sampling yields an improvement with respect to
the use of the sampled data but is strongly limited by the underestimation of
the link density in the sampled network. We put forward a second method to
build surrogate data that assumes knowledge of the density of links within one
of the groups forming the population. We show that it gives very good results
when the population is strongly structured, and discuss its limitations in the
case of a population with a weaker group structure. These limitations highlight
the interest of measurements using wearable sensors able to yield accurate
information on the structure and durations of contacts