Given the sensitivity of proton therapy to anatomical variations, this cancer
treatment modality is expected to benefit greatly from integration with
magnetic resonance (MR) imaging. One of the obstacles hindering such an
integration are strong magnetic field induced dose distortions. These have been
predicted in simulation studies, but no experimental validation has been
performed so far. Here we show the first measurement of planar distributions of
dose deposited by therapeutic proton pencil beams traversing a one-Tesla
transversal magnetic field while depositing energy in a tissue-like phantom
using film dosimetry. The lateral beam deflection ranges from one millimeter to
one centimeter for 80 to 180 MeV beams. Simulated and measured deflection agree
within one millimeter for all studied energies. These results proof that the
magnetic field induced proton beam deflection is both measurable and accurately
predictable. This demonstrates the feasibility of accurate dose measurement and
hence validates dose predictions for the framework of MR-integrated proton
therapy