SPECIES DYNAMICS AND NUTRIENT ACCUMULATION DURING EARLY PRIMARY SUCCESSION IN COASTAL SAND DUNES

Abstract

1 The present study reports on a primary succession series which started on bare soil on the Dutch island of Schiermonnikoog after the building of a sand dike. Vegetational changes were studied for 18 years by means of permanent transects along a topographic gradient from a moist plain to dry dunes. Soil development and vegetation structure were reconstructed using a chronosequence. A fertilizer experiment was set up in an intermediate successional stage in the plain and on the dune, in order to determine which soil resources limited productivity. 2 Differences in salinity, flooding and moisture content were important determinants of the differences in species composition along the topographic gradient. In addition, year-to-year fluctuations of these factors seem to be responsible for the year-to-year fluctuations in frequency of occurrence of many short-lived species. These factors did not, however, show a consistent long-term trend over time. 3 From soil analyses and the nutrient addition experiment, it is concluded that nitrogen limited above-ground biomass production. Over a period of about 16 years the total amount of nitrogen in the organic layer of the soil increased from 7 to 50 g N m-2 in the plains and from 1 to 15 g N m-2 on the dunes. 4 The accumulation of nitrogen during the successional series is accompanied by an increased biomass, a decreased light penetration to the soil surface, a decreased root/shoot ratio, increasing dominance of tall species, and a decreasing abundance of small, short-lived species. These data suggest that the importance of light competition is increasing during succession. 5 The importance of plant height versus light reduction at the soil surface in determining the outcome of light competition is discussed

    Similar works