beta-adrenoceptors mediate inhibition of lipolysis in adipocytes of tilapia (Oreochromis mossambicus)

Abstract

The regulation of triglyceride mobilization by catecholamines was investigated in the teleost fish Oreochromis mossambicus (tilapia) in vivo and in vitro. In vitro experiments were carried out with adipocytes that were isolated for the first time from fish adipose tissue. For the in vivo experiments, cannulated tilapia were exposed to stepwise decreasing oxygen levels (20, 10, and 5% air saturation; 3.9, 1.9, and 1.0 kPa PO2, respectively), each level being maintained for 2 h. Blood samples were taken at timed intervals and analyzed for plasma lactate, glucose, free fatty acids, epinephrine, norepinephrine, and cortisol. Hypoxia exposure did not change plasma epinephrine levels. In contrast, the plasma norepinephrine concentration markedly increased at all hypoxia levels. Over the same period, plasma free fatty acid levels showed a significant continuous decrease, suggesting that norepinephrine is responsible for the reduced plasma free fatty acid concentration, presumably through inhibition of lipolysis in adipose tissue. To elucidate the mechanism, adipocytes were isolated from mesenteric adipose tissue of tilapia and incubated with 1) norepinephrine, 2) norepinephrine + phentolamine (alpha(1),alpha(2)-antagonist), 3) isoproterenol (nonselective beta-agonist), 4) isoproterenol + timolol (beta(1),beta(2)-antagonist), 5) norepinephrine + timolol, and 6) BRL-35135A (beta(3)-agonist). The results demonstrate for the first time that norepinephrine and isoproterenol suppress lipolysis in isolated adipocytes of tilapia. The effect of norepinephrine is not mediated through alpha(2)-adrenoceptors but, like isoproterenol, via beta-adrenoceptors. Furthermore, this study provides strong indications that beta(3)-adrenoceptors are involved

    Similar works