research

Genetic Drift in Genetic Algorithm Selection Schemes

Abstract

A method for calculating genetic drift in terms of changing population fitness variance is presented. The method allows for an easy comparison of different selection schemes and exact analytical results are derived for traditional generational selection, steady-state selection with varying generation gap, a simple model of Eshelman's CHC algorithm, and evolution strategies. The effects of changing genetic drift on the convergence of a GA are demonstrated empirically

    Similar works

    Full text

    thumbnail-image

    Available Versions