CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Marine crude-oil biodegradation: a central role for interspecies interactions
Authors
Benjamin D Folwell
Terry J McGenity
Boyd A McKew
Gbemisola O Sanni
Publication date
1 January 2012
Publisher
'Springer Science and Business Media LLC'
Doi
View
on
PubMed
Abstract
The marine environment is highly susceptible to pollution by petroleum, and so it is important to understand how microorganisms degrade hydrocarbons, and thereby mitigate ecosystem damage. Our understanding about the ecology, physiology, biochemistry and genetics of oil-degrading bacteria and fungi has increased greatly in recent decades; however, individual populations of microbes do not function alone in nature. The diverse array of hydrocarbons present in crude oil requires resource partitioning by microbial populations, and microbial modification of oil components and the surrounding environment will lead to temporal succession. But even when just one type of hydrocarbon is present, a network of direct and indirect interactions within and between species is observed. In this review we consider competition for resources, but focus on some of the key cooperative interactions: consumption of metabolites, biosurfactant production, provision of oxygen and fixed nitrogen. The emphasis is largely on aerobic processes, and especially interactions between bacteria, fungi and microalgae. The self-construction of a functioning community is central to microbial success, and learning how such " microbial modules" interact will be pivotal to enhancing biotechnological processes, including the bioremediation of hydrocarbons. © 2012 McGenity et al.; licensee BioMed Central Ltd
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1186%2F2046-9063-8...
Last time updated on 01/04/2019
Springer - Publisher Connector
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 03/05/2017
University of Essex Research Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repository.essex.ac.uk:542...
Last time updated on 07/05/2013