thesis

Transcription factor regulation of amyloid-beta pathway genes by SP1-Modulating compounds : a novel approach in Alzheimer's Disease

Abstract

Indiana University-Purdue University Indianapolis (IUPUI)Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence of neuritic plaques consisting of extracellular amyloid-beta (Aβ) and neurofibrillary tangles comprised of hyperphosphorylated microtubule associated tau. Aβ is produced following the cleavage of amyloid precursor protein (APP) by the enzyme BACE1. Transcription factors (TFs) are proteins involved in the regulation of gene transcription. Expression levels of some TFs are perturbed in AD. SP1 binding sites on both the APP and BACE1 promoters implicate its potential role in AD. Aβ peptide itself mediates activation of cyclindependent kinase 5 (CDK5), an enzyme which phosphorylates the FOXO (Forkhead Box) TFs. In order to study mechanisms of TF regulation of Aβ production in human models, neuronally differentiated cells as well as a primary human neurosphere culture were used to test the effects of TF-modulating compounds. Our hypothesis is that by targeting relevant TFs via pharmacological inhibitors in human cells, BACE1 activity or APP expression will decrease and Aβ production will be reduced as a result. To test the involvement of TFs in the regulation of APP, we treated several mammalian cells lines and post-mitotic human neuronal cells with roscovitine, mithramycin A (MTM), MTM analogs (MTM-SDK, MTM-SK), and tolfenamic acid (TA). MTM and TA treatment of neurons differentially activated several TFs implicated in AD. Treatment of differentiated neurospheres with MTM led to a significant decrease in APP and SP1 expression along with Aβ40 levels. Epigenetic mechanisms involve alteration of the binding affinity between DNA and transcription factors. We predict that modulation of these TFs may be influenced by epigenetic modifications. To test the effects of drugs on epigenetic markers, histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activity was measured. MTM-SDK significantly decreased DNMT activity in differentiated neuroblastoma cells, this may enhance or decrease the ability of SP1 to bind to target DNA and affect transcription of BACE1 or APP. Targeting TF activity is a novel means to manipulate the amyloid pathway. Compounds modifying TF binding to sites on the BACE1 or APP promoters may provide a means to limit the production of amyloid-beta and slow the symptoms of AD

    Similar works