In this work, we generalize the current theory of strong convergence rates for the backward Euler–Maruyama scheme for highly non-linear stochastic differential equations, which appear in both mathematical finance and bio-mathematics. More precisely, we show that under a dissipative condition on the drift coefficient and superlinear growth condition on the diffusion coefficient the BEM scheme converges with strong order of a half. This type of convergence gives theoretical foundations for efficient variance reduction techniques for Monte Carlo simulations. We support our theoretical results with relevant examples, such as stochastic population models and stochastic volatility models