research

On the selection of connectivity-based metrics for WSNs using a classification of application behaviour

Abstract

This paper addresses a subset of Wireless Sensor Network (WSN) applications in which data is produced by a set of resource-constrained source nodes and forwarded to one or more sink nodes. The performance of such applications is affected by the connectivity of the WSN, since nodes must remain connected in order to transfer data from sources to sinks. Designers use metrics to measure and improve the efficacy of WSN applications. We aim to facilitate the choice of connectivity-based metrics by introducing a classification of WSN applications based on their data collection behaviour and indicating the metrics best suited to the evaluation of particular application classes. We argue that no suitable metric currently exists for a significant class of applications with the following characteristics: 1) application data is periodically routed or disseminated from source nodes to one or more sink nodes, and 2) the application can continue to function with the loss of source nodes although its useful network lifetime diminishes as a result. We present a new metric, known as Connectivity Weighted Transfer, which may be used to evaluate WSN applications with these characteristics.Preprin

    Similar works