thesis

Systems engineering languages for modeling and analyzing supervisory control structures in cyber-physical systems

Abstract

In today’s world, a new generation of high-tech cyber-physical systems are becoming an integral part of our societies and their impact is only going to increase within the next years. Because of their importance, the companies that develop these systems use proper systems engineering modeling tools to help with the design and development of these types of systems and to accelerate the whole development process. In this thesis, 4 very popular modeling tools/languages are being tested and evaluated in terms of their capabilities for model-based systems engineering. These tools are Simulink&Stateflow from MATLAB, Modelica, MechatronicUML and SysML. In order to do that, a proper introduction of the systems engineering process is presented to set the criteria in which the different tools/lan- guages will be evaluated. To support the evaluation process, a case study is presented with the CIF3 language that will be attempted with all the other languages/tools. Each modeling lan- guage/tool has been evaluated individually at first and then together with the others in the end. In addition to the first evaluation, a proper basic introduction of all the modeling concepts that each tool uses for modeling cyber-physical systems is provided and the building of the case study as well. After that, in the second evaluation, the languages are extensively compared against each other in terms of all the criteria set previously to see exactly the scope of capabilities that each tools has. As a result from the two evaluations, a definitive review for each language/tool is presented addressing their overall scope of capabilities, main strong features, main uses, possible ways of improving and future development.Outgoin

    Similar works