research

Distributional chaotic generalized shifts

Abstract

Suppose XX is a finite discrete space with at least two elements, Γ\Gamma is a nonempty countable set, and consider self--map φ:ΓΓ\varphi:\Gamma\to\Gamma. We prove that the generalized shift σφ:XΓXΓ\sigma_\varphi:X^\Gamma\to X^\Gamma with σφ((xα)αΓ)=(xφ(α))αΓ\sigma_\varphi((x_\alpha)_{\alpha\in\Gamma})=(x_{\varphi(\alpha)})_{\alpha\in\Gamma} (for (xα)αΓXΓ(x_\alpha)_{\alpha\in\Gamma}\in X^\Gamma) is: \bullet distributional chaotic (uniform, type 1, type 2) if and only if φ:ΓΓ\varphi:\Gamma\to\Gamma has at least a non-quasi-periodic point, \bullet dense distributional chaotic if and only if φ:ΓΓ\varphi:\Gamma\to\Gamma does not have any periodic point, \bullet transitive distributional chaotic if and only if φ:ΓΓ\varphi:\Gamma\to\Gamma is one--to--one without any periodic point. We complete the text by counterexamples.Comment: 13 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 26/05/2021