We prove a couple of results concerning pseudodifferential perturbations of
differential operators being sums of squares of vector fields and satisfying
H\"ormander's condition. The first is on the minimal Gevrey regularity: if a
sum of squares with analytic coefficients is perturbed with a
pseudodifferential operator of order strictly less than its subelliptic index
it still has the Gevrey minimal regularity. We also prove a statement
concerning real analytic hypoellipticity for the same type of
pseudodifferential perturbations, provided the operator satisfies to some extra
conditions (see Theorem 1.2 below) that ensure the analytic hypoellipticity