We explore a model of metapopulation genetics which is based on a more
ecologically motivated approach than is frequently used in population genetics.
The size of the population is regulated by competition between individuals,
rather than by artificially imposing a fixed population size. The increased
complexity of the model is managed by employing techniques often used in the
physical sciences, namely exploiting time-scale separation to eliminate fast
variables and then constructing an effective model from the slow modes.
Remarkably, an initial model with 2D variables, where D
is the number of islands in the metapopulation, can be reduced to a model with
a single variable. We analyze this effective model and show that the
predictions for the probability of fixation of the alleles and the mean time to
fixation agree well with those found from numerical simulations of the original
model.Comment: 16 pages, 4 figures. Supplementary material: 22 pages, 3 figure