Topological phase transitions induced by varying topology and boundaries in the toric code

Abstract

One of the important characteristics of topological phases of matter is the topology of the underlying manifold on which they are defined. In this paper, we present the sensitivity of such phases of matter to the underlying topology, by studying the phase transitions induced due to the change in the boundary conditions. We claim that these phase transitions are accompanied by broken symmetries in the excitation space and to gain further insight we analyze various signatures like the ground state degeneracy, topological entanglement entropy while introducing the open-loop operator whose expectation value effectively captures the phase transition. Further, we extend the analysis to an open quantum setup by defining effective collapse operators, the dynamics of which cool the system to distinct steady states both of which are topologically ordered. We show that the phase transition between such steady states is effectively captured by the expectation value of the open-loop operator

    Similar works