CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Use of sucrose to diminish pore formation in freeze-dried heart valves
Authors
Andres Hilfiker (60280)
Andres Vasquez-Rivera (7204649)
+8 more
Artemis Kouvaka (7206494)
Axel Haverich (295514)
Daniele Dipresa (7205510)
Fabian Will (7211495)
Harriette Oldenhof (7211489)
Sotiris Korossis (5214488)
Tobias Goecke (7211492)
Willem F. Wolkers (5484968)
Publication date
1 January 2018
Publisher
Doi
Cite
Abstract
© 2018, The Author(s). Freeze-dried storage of decellularized heart valves provides easy storage and transport for clinical use. Freeze-drying without protectants, however, results in a disrupted histoarchitecture after rehydration. In this study, heart valves were incubated in solutions of various sucrose concentrations and subsequently freeze-dried. Porosity of rehydrated valves was determined from histological images. In the absence of sucrose, freeze-dried valves were shown to have pores after rehydration in the cusp, artery and muscle sections. Use of sucrose reduced pore formation in a dose-dependent manner, and pretreatment of the valves in a 40% (w/v) sucrose solution prior to freeze-drying was found to be sufficient to completely diminish pore formation. The presence of pores in freeze-dried valves was found to coincide with altered biomechanical characteristics, whereas biomechanical parameters of valves freeze-dried with enough sucrose were not significantly different from those of valves not exposed to freeze-drying. Multiphoton imaging, Fourier transform infrared spectroscopy, and differential scanning calorimetry studies revealed that matrix proteins (i.e. collagen and elastin) were not affected by freeze-drying
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Loughborough University Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:figshare.com:article/95614...
Last time updated on 26/03/2020
Institutionelles Repositorium der Leibniz Universität Hannover
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:www.repo.uni-hannover.de:1...
Last time updated on 09/07/2019