CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
research
Hydrogel-based microfluidics for vascular tissue engineering
Authors
Victor N. Bagratashvili
Boris Chichkov
+9 more
Andrea Deiwick
Roman Kiyan
Anastasia Koroleva
Olga Kufelt
Roger Narayan
Alexander Nguyen
Thomas Scheper
Anastasia Shpichka
Peter Timashev
Publication date
1 January 2016
Publisher
Berlin : De Gruyter
Doi
Cite
Abstract
In this work, we have explored 3-D co-culture of vasculogenic cells within a synthetically modified fibrin hydrogel. Fibrinogen was covalently linked with PEG-NHS in order to improve its degradability resistance and physico-optical properties. We have studied influences of the degree of protein PEGylation and the concentration of enzyme thrombin used for the gel preparation on cellular responses. Scanning electron microscopy analysis of prepared gels revealed that the degree of PEGylation and the concentration of thrombin strongly influenced microstructural characteristics of the protein hydrogel. Human umbilical vein endothelial cells (HUVECs) and human adipose-derived stem cells (hASCs), used as vasculogenic co-culture, could grow in 5:1 PEGylated fibrin gels prepared using 1:0.2 protein to thrombin ratio. This gel formulation supported hASCs and HUVECs spreading and the formation of cell extensions and cell-to-cell contacts. Expression of specific ECM proteins and vasculogenic process inherent cellular enzymatic activity were investigated by immunofluorescent staining, gelatin zymography, western blot and RT-PCR analysis. After evaluation of the optimal gel composition and PEGylation ratio, the hydrogel was utilized for investigation of vascular tube formation within a perfusable microfluidic system. The morphological development of this co-culture within a perfused hydrogel over 12 days led to the formation of interconnected HUVEC-hASC network. The demonstrated PEGylated fibrin microfluidic approach can be used for incorporating other cell types, thus representing a unique experimental platform for basic vascular tissue engineering and drug screening applications. © 2016 by De Gruyter
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Institutionelles Repositorium der Leibniz Universität Hannover
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:www.repo.uni-hannover.de:1...
Last time updated on 02/05/2018
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1515%2Fbnm-2015-00...
Last time updated on 05/06/2019