NMR Studies of Lithium Diffusion in Li3(NH2)2I over Wide Range of Li+ Jump Rates

Abstract

We have studied the Li diffusion in the complex hydride Li3(NH2)2I which appears to exhibit fast Li ion conduction. To get a detailed insight into the Li motion, we have applied 7Li nuclear magnetic resonance spectroscopy methods, such as spin-lattice relaxation in the laboratory and rotating frames of reference, as well as spin-alignment echo. This combined approach allows us to probe Li jump rates over the wide dynamic range (~102–109 s−1). The spin-lattice relaxation data in the range 210–410 K can be interpreted in terms of a thermally-activated Li jump process with a certain distribution of activation energies. However, the low-temperature spin-alignment echo decays at T≤200 K suggest the presence of another Li jump process with the very low effective activation energy. © 2017 Walter de Gruyter GmbH, Berlin/Boston 2017

    Similar works