Correspondência eficiente de descritores SIFT para construção de mapas densos de pontos homólogos em imagens de sensoriamento remoto [Efficient matching steps of the SIFT for constructing a dense map of conjugate points in remote sensing images]
Curitiba Pr : Univ. Federal Parana, Centro Politecnico
Doi
Abstract
Area-based automatic image matching combined with a region-growing technique are able to provide a dense and accurate set of corresponding points. However, the region-growing process may stop at image patches where the horizontal x-parallax has an abrupt change. In such cases new pairs of corresponding points (seeds) must be provided, usually by a human operator. The region growing procedure restarts then from the new seed points. Depending upon the type of image and the 3D-structure of the mapped area, the human intervention may be considerable. A fully automatic alternative for finding conjugate points in stereo pairs was proposed by the authors in a prior work. The method combines the scale invariant feature transform, the Least-Squares matching and the region-growing technique. This work presents an extension of that technique. Basically, improvements in the matching step of the SIFT algorithm are proposed, which explores properties of stereo images produced by aerial and orbital sensors. Experiments conducted on stereo pairs from both airborne and satellite imagery show that the benefit of the proposed changes is twofold. Firstly, the number of true substantially with no significant increase in the proportion Secondly, the computational load is dramatically reduced.Métodos automáticos de localização de pontos homólogos em imagens digitais baseados em área, combinados com técnicas de crescimento de região, são capazes de produzir uma malha densa e exata de pontos homólogos. Entretanto, o processo de crescimento de região pode ser interrompido em regiões da imagem, cuja paralaxe no eixo horizontal apresenta variação abrupta. Essa situação geralmente é causada por uma descontinuidade na superfície ou espaço-objeto imageado, tal como um prédio numa cena urbana ou um paredão de exploração de uma mina a céu aberto. Nesses casos, novos pares de pontos homólogos (sementes) devem ser introduzidos, normalmente por um operador humano, a partir dos quais o processo é reiniciado. Dependendo do tipo da imagem utilizada e da estrutura 3D da região mapeada, a intervenção humana pode ser considerável. Uma alternativa totalmente automatizada em que se combinam as técnicas SIFT (Scale Invariant Feature Transform), pareamento por mínimos quadrados e crescimento de região foi proposta anteriormente pelos autores. O presente trabalho apresenta uma extensão a essa técnica. Basicamente, propõem-se alterações na etapa de correspondência do SIFT, que exploram características de estereogramas produzidos por sensores aéreos e orbitais. Avaliações experimentais demonstram que as modificações propostas trazem dois tipos de benefícios. Em primeiro lugar, obtém-se um aumento do número de pontos homólogos encontrados, sem aumento correspondente na proporção de falsas correspondências. Em segundo lugar, a carga computacional é reduzida substancialmente