thesis

Spelling correction in the NLP system 'LOLITA: dictionary organisation and search algorithms

Abstract

This thesis describes the design and implementation of a spelling correction system and associated dictionaries, for the Natural Language Processing System 'LOLITA'. The dictionary storage is based upon a trie (M-ary tree) data-structure. The design of the dictionary is described, and the way in which the data-structure is implemented is also discussed. The spelling correction system makes use of the trie structure in order to limit repetition and "garden path' searching. The spelling correction algorithms used are a variation on the 'reverse minimum edit-distance' technique. These algorithms have been modified in order to place more emphasis on generation in order of likelihood. The system will correct up to two simple errors {i.e. insertion, omission, substitution or transposition of characters) per word. The individual algorithms are presented in turn and their combination into a unified strategy to correct misspellings is demonstrated. The system was implemented in the programming language Haskell; a pure functional, class-based language, with non-strict semantics and polymorphic type-checking. The use of several features of this language, in particular lazy evaluation, and their corresponding advantages over more traditional languages are described. The dictionaries and spelling correcting facilities are in use in the LOLITA system. Issues pertaining to 'real word' error correction, arising from the system's use in an NLP context, axe also discussed

    Similar works