research

Flow and transport in tissue engineering scaffolds: A network modelling approach

Abstract

This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.Tissue engineers aim to grow functional tissues in the laboratory. One approach is to seed cells on a porous biomaterial scaffold, which is then cultured in a flow perfusion bioreactor. Such bioreactors enhance the transport of nutrients and growth factors to the cells by convection, and provide mechanical loads to mechanosensitive tissues. In this paper, we adopt a network modelling approach to provide insight into the nature of the flow, nutrient transport and cell distribution through the porous scaffold. The approach resolves flow and nutrient transport at the pore scale, and thus enables the local cellular environment to be determined. We demonstrate how this method can be used to study the impact of scaffold geometry (e.g. porosity, connectivity) on the cellular environment, and hence provide insight into the optimum culture conditions required to obtain functional tissues.This study is funded by the EPSRC

    Similar works