This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.We present methodological innovations to the multi-component lattice Boltzmann equation
simulation method which allow for the simulation of dynamic contact lines in the continuum approximation. The improvements are set-out and verified by quantitative results. They allow the simulator access to an expanded range of simulation parameters like viscosity, viscosity contrast and interfacial tensions, and to obtain data with low levels of interfacial micro-current activity in the region of the dynamic contact line