research

Realization and efficiency evaluation of a micro-photocatalytic cell prototype for real-time blood oxygenation

Abstract

This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.A novel approach to blood oxygenation is presented. Microfluidic channels molded out of PDMS (using standard soft lithography techniques) work as photocatalytic cells, where the coupling of anatase titanium dioxide (TiO2) thin films and platinum electrodes, allow an electrically assisted photocatalytic reaction to produce dissolved oxygen gas from the water content of the flowing blood. The thin films were deposited onto quartz glass substrates at room temperature (300K) using reactive RF sputtering with a Ti metal target. The results of the current study, as a proof of concept, have shown that the device can generate oxygen at a rate of 4.06×10-3 mM O2/(cm2 min) and oxygenate venous blood to the oxygen saturation level of arterial blood

    Similar works