research

cloud property retrieval using synergistic AATSR and MERIS observations

Abstract

A newly developed daytime cloud property retrieval algorithm FAME-C (Freie Universität Berlin AATSR MERIS Cloud) is presented. Synergistic observations from AATSR and MERIS, both mounted on the polar orbiting satellite ENVISAT, are used for cloud screening. For cloudy pixels two main steps are carried out in a sequential form. First, a micro-physical cloud property retrieval is performed using an AATSR near-infrared and visible channel. Cloud phase, cloud optical thickness, and effective radius are retrieved, and subsequently cloud water path is computed. Second, two independent cloud top height products are retrieved. For cloud top temperature AATSR brightness temperatures are used, while for cloud top pressure the MERIS oxygen-A absorption channel is used. Results from the micro-physical retrieval serve as input for the two cloud top height retrievals. Introduced are the AATSR and MERIS forward models and auxiliary data needed in FAME-C. Also, the optimal estimation method with uncertainty estimates, which also provides for uncertainty estimated of the retrieved property on a pixel-basis, is presented. Within the frame of the ESA Climate Change Initiative project first global cloud property retrievals have been conducted for the years 2007–2009. For this time period verification efforts are presented comparing FAME-C cloud micro-physical properties to MODIS-TERRA derived cloud micro-physical properties for four selected regions on the globe. The results show reasonable accuracies between the cloud micro- physical retrievals. Biases are generally smallest for marine stratocumulus clouds; −0.28, 0.41μm and −0.18 g m−2 for cloud optical thickness, effective radius and cloud water path, respectively. This is also true for the root mean square error. Also, both cloud top height products are compared to cloud top heights derived from ground-based cloud radars located at several ARM sites. FAME-C mostly shows an underestimation of cloud top heights when compared to radar observations, which is partly attributed to the difficulty of accurate cloud property retrievals for optically thin clouds and multi-layer clouds. The bias is smallest, −0.9 km, for AATSR derived cloud top heights for single- layer clouds

    Similar works