research

Forced boiling of nanofluids, effects of contact angle and surface wettability

Abstract

This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Nanofluids are the suspension of ultra fine particles in a conventional base fluid which tremendously changes the heat transfer characteristics of the original fluid. In this paper the boiling characteristics of different nanofluids was studied numerically using a CFD approach. Dispersions of Al2O3, SiO2, and ZrO2 nanoparticles in water at different concentrations (0.1, 0.01 and 0.001% by volume) have been used. Effects of some noticeable parameters such as nanoparticle concentration and temperature profile on the critical heat flux (CHF) have been investigated. The results of CFD simulation based on two-phase models were compared with experimental data. Boiling curves and critical heat flux were measured for the base fluid and the nanofluids. Based on the simulation results, it was concluded that the using of the Zirconium oxide (0.001%) led to modest (up to 31%) increase in the CHF. The minimum enhancement belongs to the aluminum oxide (0.1%) which increases the critical heat flux up to 11%. According to the experimental results, despite of expectation, addition of the nanoparticles causes decreasing the boiling heat transfer coefficient. This reduction is related to the changing of the surface characteristic causing by depositing the nanoparticles. In the Al2O3/water and SiO2/water nanofluids, the surface contact angle increases with increase in the nanoparticle volume fraction, so the CHF decreases

    Similar works