Helium has a unique phase diagram and below 25 bar it does not form a solid
even at the lowest temperatures. Electrostriction leads to the formation of a
solid layer of helium around charged impurities at much lower pressures in
liquid and superfluid helium. These so-called ‘Atkins snowballs’ have been
investigated for several simple ions. Here we form HenC60+ complexes with n
exceeding 100 via electron ionization of helium nanodroplets doped with C60.
Photofragmentation of these complexes is measured by merging a tunable narrow-
bandwidth laser beam with the ions. A switch from red- to blueshift of the
absorption frequency of HenC60+ on addition of He atoms at n=32 is associated
with a phase transition in the attached helium layer from solid to partly
liquid (melting of the Atkins snowball). Elaborate molecular dynamics
simulations using a realistic force field and including quantum effects
support this interpretation