Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are
major sources of magnetic storms on Earth and are therefore considered to be
the most dangerous space weather events. The Observatories of Solar Corona and
Active Regions (OSCAR) mission is designed to identify the 3D structure of
coronal loops and to study the trigger mechanisms of CMEs in solar Active
Regions (ARs) as well as their evolution and propagation processes in the
inner heliosphere. It also aims to provide monitoring and forecasting of geo-
effective CMEs and CIRs. OSCAR would contribute to significant advancements in
the field of solar physics, improvements of the current CME prediction models,
and provide data for reliable space weather forecasting. These objectives are
achieved by utilising two spacecraft with identical instrumentation, located
at a heliocentric orbital distance of 1 AU from the Sun. The spacecraft will
be separated by an angle of 68° to provide optimum stereoscopic view of the
solar corona. We study the feasibility of such a mission and propose a
preliminary design for OSCAR