research

Kinematic vorticity number - a tool for estimating vortex sizes and circulations

Abstract

The influence of extratropical vortices on a global scale is mainly characterised by their size and by the magnitude of their circulation. However, the determination of these properties is still a great challenge since a vortex has no clear delimitations but is part of the flow field itself. In this work, we introduce a kinematic vortex size determination method based on the kinematic vorticity number Wk to atmospheric flows. Wk relates the local rate-of-rotation to the local rate-of-deformation at every point in the field and a vortex core is identified as a simply connected region where the rotation prevails over the deformation. Additionally, considering the sign of vorticity in the extended Wk-method allows to identify highs and lows in different vertical layers of the atmosphere and to study vertical as well as horizontal vortex interactions. We will test the Wk-method in different idealised 2-D (superposition of two lows/low and jet) and real 3-D flow situations (winter storm affecting Europe) and compare the results with traditional methods based on the pressure and the vorticity fields. In comparison to these traditional methods, the Wk-method is able to extract vortex core sizes even in shear-dominated regions that occur frequently in the upper troposphere. Furthermore, statistics of the size and circulation distributions of cyclones will be given. Since the Wk-method identifies vortex cores, the identified radii are subsynoptic with a broad peak around 300-500km at the 1000 hPa level. However, the total circulating area is not only restricted to the core. In general, circulations are in the order of 107m2/s with only a few cyclones in the order of 108m2/s

    Similar works