CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Fine-Grained Hierarchical Spatiotemporal Descriptors for Micro-Expression Recognition
Authors
张力为
段先华
王甦菁
Publication date
1 January 2021
Publisher
Doi
Cite
Abstract
由于微表情持续时间小于0.5 s、非自愿性和低强度等特点,微表情识别仍然是具有挑战性的任务。对分层时空特征描述符进行改进,提出一种新的细粒度分层时空特征的微表情识别方法。首先提取微表情视频片段中的各层次时空特征,利用投影矩阵建立时空特征和微表情之间的联系,进而选择对识别任务有贡献的区域。然后统计具有整体最大贡献度的层次,将该层次下选中的区域块和前一层选中的区域块进行交集操作,达到去除分层时空特征的空间冗余性和提升微表情特征区分度的目的。在CASMEⅡ上的实验表明提出的方法能够细粒度化微表情发生区域,获得了更好的识别结果。</p
Similar works
Full text
Available Versions
Institutional Repository of Institute of Psychology, Chinese Academy of Sciences
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:/ir.psych.ac.cn:311026/389...
Last time updated on 11/06/2025