research

Near-Surface Scattering From High Velocity Carbonates In West Texas

Abstract

Seismic data acquired directly over near-surface limestone formations are commonly observed to be of inferior quality. A possible cause for this degradation is scattering in the near-subsurface by, e.g., the weathering layer, rough free-surface topography, or heterogeneities such as cavities or clusters of vugs. We applied different numerical scattering schemes to study the effects of each of these three scattering mechanisms. For a particular dataset acquired in West Texas, we find that a weathering layer is the dominant cause of noise on records acquired in valleys. However on mesas, nearsubsurface heterogeneity is the primary cause of scattered wave-energy. Topography turned out to be of only secondary importance. As additional attributes, we use energy-density and energy-flux vectors to study the frequency dependence of the different scattering models. These attributes allow us to study where energy concentrates and in which direction it flows. For example, we observed that near sub-surface heterogeneities build up waveguides which efficiently trap seismic energy near the surface.Massachusetts Institute of Technology. Borehole Acoustics and Logging Consortiu

    Similar works