research

Fourth-Order Finite Difference Acoustic Logs In A Transversely Isotropic Formation

Abstract

In this paper we present a finite difference scheme for seismic wave propagation in a fluid-filled borehole in a transversely isotropic formation. The first-order hyperbolic differential equations are approximated explicitly on a staggered grid using an algorithm that is fourth-order accurate in space and second-order accurate in time. The grid dispersion and grid anisotropy are analyzed. Grid dispersion and anisotropy are well suppressed by a grid size of 10 points per wavelength. The stability condition is also obtained from the dispersion analysis. This finite difference scheme is implemented on the nCUBE2 parallel computer with a grid decomposition algorithm. The finite difference synthetic waveforms are compared with those generated using the discrete wavenumber method. They are in good agreement. The damping layers effectively absorbed the boundary reflections. Four vertically heterogeneous borehole models: a horizontal layered formation, a borehole with a radius change, a semi-infinite borehole, and a semi-infinite borehole with a layer, are studied using the finite difference method. Snapshots from the finite difference results provide pictures of the radiating wavefields.Massachusetts Institute of Technology. Borehole Acoustics and Logging Consortiu

    Similar works