research

Physical Properties of a Set of Sandstones, III: the Effects Of Fine Grained Pore Filling Material on Compressional Wave Velocity

Abstract

We have used aspect ratio modeling to explain the measured compressional wave velocities of twenty different dry sandstone samples with varying clay contents at a single confining pressure of 0.5 kbar. Velocities of the sandstones range between 3.1 km/sec and 5.7 km/sec. Measured porosities are between 6% and 33%, clay contents between 2% and 30%. Pores were described using three simple type classifications. The pore type distributions of the samples were quantified by point counting polished impregnated thin sections using a scanning electron microscope. A representative aspect-ratio was assigned to each of the three categories of pore type. Velocities were modeled using these aspect ratios weighted by the observed distribution of the porosity types. Agreement between theoretical and measured velocities is generally within 10%. The modeling suggests that the effects of clays in sandstone pores is to reduce the sample porosity without reducing the non-framework (void + clay) volume. Thus, for a given porosity, clay rich samples contain greater non-framework volume, which in turn lowers velocity. The model derived from the dry measurements can be used to successfully approximate empirical relationships for saturated samples of velocity-porosity-clay content taken from the literature.Schlumberger-Doll Research CenterSchlumberger Foundation. Post-Doctoral Fellowshi

    Similar works