CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Knowledge Representation of Process Gas Chromatograph Intelligent Fault Diagnosis Based on Framework
Authors
张世斌
惠存万
贾洋
邹涛
Publication date
1 January 2018
Publisher
Abstract
通过气体成分在线分析,过程气相色谱仪对提高企业自动化水平和生产管理精细化程度起重大作用。作为一种复杂的在线分析仪表,较高的样品和信号处理需求、恶劣的使用环境使过程气相色谱仪的可靠性偏低,复杂的仪器结构、有限的故障信息和不确定对应的故障特性,为以人工智能为核心的故障智能诊断技术提供用武之地。基于故障诊断的基本思想,设计了适用于故障诊断的通用框架表示形式;针对过程气相色谱仪的结构特性和工作流程构建故障诊断属性集;结合石化工业中常见的过程气相色谱仪检测器熄火和取样元件堵塞故障,对故障诊断知识的框架结构进行形象地表示。为过程气相色谱仪的故障智能诊断研究提供可行的基础
Similar works
Full text
Available Versions
Shenyang Institute of Automation,Chinese Academy Of Sciences
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ir.sia.cn/:173321/23941
Last time updated on 03/02/2019