slides

Qualitative responses of a vortex core to tip blowing and intersecting airfoils

Abstract

The qualitative responses of a trailing vortex core to change in its convective velocity produced by injection of air into the vortex core and by the flow field of a lifting surface in the path of the core are discussed. Flow pictures of the vortex core and vorticity measurements in the core show that an axial momentum injection of approximately 35% of the total wing drag alters the vortex structure and behavior quite drastically by effectively inducing a more rapid dispersion of the vorticity in the core. The data indicate that the phenomenon is governed by the rate of injection of the momentum rather than the mass flow rate. There also seems to be an optimum rate of injection beyond which increased injection does not bring about equally significant changes in the vortex core. Flow patterns of the region of interaction between the flow field of a lifting surface and the vortex core show two modes of vortex response; (1) the vortex core bends, following the streamline shape until it intercepts the wake of the wing where it is abruptly dispersed, or (2) the vortex core may be sliced into two similar vortices when the vortex hits the leading edge of the wing

    Similar works