thesis

Fracture Behavior in Nylon 6 Fibers

Abstract

Electron paramagnetic resonance (EPR) techniques are used to determine the number of free radicals produced during deformation leading to fracture of nylon 6 fibers. A reaction rate molecular model is proposed to explain some of the deformation and bond rupture behavior leading to fracture. High-strength polymer fibers are assumed to consist of a sandwich structure of disordered and ordered regions along the fiber axis. In the disordered or critical flaw regions, tie chains connecting the ordered or crystalline block regions are assumed to have a statistical distribution in length. These chains are, therefore, subjected to different stresses. The effective length distribution was determined by EPR. The probability of bond rupture was assumed to be controlled by reaction-rate theory with a stress-aided activation energy and behavior of various loadings determined by numerical techniques. The model is successfully correlated with experimental stress, strain, and bond rupture results for creep, constant rate loadings, cyclic stress, stress relaxation and step strain tests at room temperature

    Similar works