research

Cyclic debonding of adhesive joints

Abstract

Bonded lap joints were manufactured and tested under static and fatigue loading. Specimens were designed to fail in the bondline, and all fatigue tests included monitoring the crack growth to failure. Test specimens included aluminum details joined by two different adhesives. Specimens also included titanium and boron-epoxy details joined by an epoxy laminating resin. Additonal program variables included bondline thickness, adherend and spice plate thickness, specimen width, and specimen fabrication procedure. Adhesive aging was found to be generally detrimental to the lives of most of the specimens bonded with one adhesive system. Adhesive material was found to have a major influence on debond rate. Co-cured titanium/boron-epoxy specimens were found to resist debonding better than specimens fabricated with a sequential cure. Splice plate thickness and test section width were found to have little effect on debond rate. The data also suggested the existence of an optimum bondline thickness

    Similar works