Subnanometer sized transition metal clusters have attracted a great deal of interest in recent years. In this thesis we have investigated the structures, electronic and optical properties, the structural evolution due to doping with a heteroatom, and the catalytic activity of subnanometer sized Aun (n = 2-20) clusters using various computational methods. Another major theme of this thesis has been to understand the mechanisms of organic reactions such as C–C coupling and cycloisomerization reactions triggered by transition metal complexes. We have reported electronic and chemical properties of novel 2D materials such as fluorographene, germanene, and germanane. One future extension of this work shall be the investigation of metal clusters anchored on these 2D systems for designing heterogeneous catalysts for vital organic transformations, which has been studied in the presence of naked metal clusters and metal complexes in the present thesis.Research was carried out under the supervision of Prof. Ayan Dutta of Spectroscopy division under SPS [School of Physical Sciences]Research was conducted under IACS fellowship and DST gran