3D land CSEM inversion in noisy environment with a single transmiter: inversion approach and application for geothermal water prospection

Abstract

International audienceAnthropogenic noise, cost and logistical constrains generaly limit to the use of land CSEM to a few transmiter positions for the deep imaging of the electrical conductivity. The 3D inversion of CSEM data in the near field using a single transmiter position suffers from critical sensitivity singularities. We proposed a robust inversion framework adapted to this ill-conditioned inversion problem. The framework relies specificaly on a robust Gauss-Newton solver, model parameter transformations to compensate the heterogeneous sensitivies, and on the reformulation of the near field CSEM data under the form of a pseudo-MT tensor. We describe the approach used for modeling and inversion implemented in our code POLYEM3D and show the advantages of pseudo-MT tensor formulation. The strategy have been tested on a pathologic synthetic case inspired from grayver et al (2013), and then was successfully applied to a real CSEM dataset acquired in the context of thermal water prospection in a noisy environnement

    Similar works