'American Institute of Mathematical Sciences (AIMS)'
Abstract
International audienceThis paper presents a global stabilization for the two and three-dimensional Navier-Stokes equations in a bounded domain Ω around a given unstable equilibrium state, by means of a boundary normal feedback control. The control is expressed in terms of the velocity field by using a non-linear feedback law. In order to determine the feedback control law, we consider an extended system coupling the equations governing the perturbation with an equation satisfied by the control on the domain boundary. By using the Faedo-Galerkin method and a priori estimation techniques, a stabilizing boundary control is built. This control law ensures a decrease of the energy of the controlled discrete system. A compactness result then allows us to pass to the limit in the system satisfied by the approximated solutions