research

Development OF A Multi-Scale Framework for Mapping Global Evapotranspiration

Abstract

As the worlds water resources come under increasing tension due to dual stressors of climate change and population growth, accurate knowledge of water consumption through evapotranspiration (ET) over a range in spatial scales will be critical in developing adaptation strategies. Remote sensing methods for monitoring consumptive water use (e.g, ET) are becoming increasingly important, especially in areas of significant water and food insecurity. One method to estimate ET from satellite-based methods, the Atmosphere Land Exchange Inverse (ALEXI) model uses the change in mid-morning land surface temperature to estimate the partitioning of sensible and latent heat fluxes which are then used to estimate daily ET. This presentation will outline several recent enhancements to the ALEXI modeling system, with a focus on global ET and drought monitoring

    Similar works